

The study of energy transfers and chemical driving forces

HEAT FLOW

Heat flowing into or out of a system always results in some kind of change to the system

- 1. The temperature of the system could change
- 2. There could be some other change, like a change in physical state, for instance

HEAT FLOW

- When heat flowing into or out of a substance results in a △T, we can calculate the amount of heat with the equation: q = ms △T
- But sometimes heat flowing into or out of a substance results in a different kind of change – <u>without a temperature change</u>
 - Melting, freezing, chemical reactions, etc.
 - Measured as ΔH a change in <u>enthalpy</u>

Enthalpy

• Enthalpy (H) \Rightarrow the total E (KE + PE) of a system at constant P when a system reacts, • $\Delta H = H_{\text{final}} - H_{\text{initial}}$ for a chemical reaction: • $\Delta H_{rxn} = H_{products} - H_{reactants}$

The only problem is...

The enthalpy of a system (H) cannot actually be measured • $KE = \frac{1}{2}mv^2$ the velocity of any object is always relative to a *frame of reference* the absolute velocity of the earth cannot be determined

But, we do know...

• For an <u>endothermic</u> reaction, ΔH is (+)

■ For an <u>exothermic</u> reaction, <u>AH is</u> (-)

so, \Delta H is all that is really important, and it can be measured if we assume all the energy gained or lost is heat

At constant pressure

$or... C = n \Delta H$

Measuring ΔH

Because ΔH = q/n, the heat lost or gained *per mole*, if we can measure the heat lost or gained, we can know the value of ΔH

 $\Box \Delta H$ is a state function -• that is, what is the absolute difference? the "history" of how it got there isn't important • ex: T, P, V, etc...

What are all the $\Delta H's$?

Any energy change for a system that <u>doesn't result in a ΔT for the system</u> is measured as $a \Delta H$ Ex: melting/freezing, boiling/condensing, dissolving, or the energy that flows into or out of a reacting system

Changes in state require changes in energy (Δ H)

What do all the ΔH 's mean?

Note:

• all ΔH 's are usually kJ/mol

 divide the number of kJ of heat that flow by the # of moles

 reverse process = same #, opposite sign

What do all the ΔH 's mean? $\blacksquare \Delta H_{fus}$ = the heat that must be added to change 1.0mol of a substance from a solid to liquid at it's melting point ■ For freezing \rightarrow use a (-) number • Freezing is exothermic • For melting \rightarrow use a (+) number • Melting is endothermic

What do all the ΔH 's mean?

 $\square \Delta H_{vap}$ = the heat that must be added to change 1.0mol of a substance from a liquid to gas at it's boiling point • For condensing \rightarrow use a (-) number • condensing is exothermic • For boiling \rightarrow use a (+) number • boiling is endothermic

What do all the ΔH 's mean?

 ΔH_{soln} = the heat that is either absorbed (+ ΔH_{soln}) or released by (- ΔH_{soln}) a substance when it <u>dissolves</u>

 ΔH_{rxn} = the heat that is either absorbed (+ ΔH_{rxn}) or released by (- ΔH_{rxn}) the reactants during the course of a <u>chemical</u> reaction

Which ΔH when?

• ΔH_{fus} = melting (+) or freezing (-)

• ΔH_{vap} = boiling (+) or condensing (-)

• ΔH_{soln} = dissolving: can be (+) or (-)

• ΔH_{rxn} = reacting: can be (+) or (-)

<u>To Review</u>: Heat flow can result in several things...

1) If the <u>heat flow results in a ΔT </u>, the equation used is:

 $q = ms \Delta T$

2)

IF the heat flow results in a different change – like **melting** or freezing, the equation is:

 $q = n\Delta H$

The study of energy transfers and chemical driving forces

calorimetry

 A <u>calorimeter</u> is a device used to measure the ∆T for a reacting system

Often, filled with water to absorb or release heat

The apparatus (and any water within in) are part of the SURROUNDINGS ■ Because the heat is absorbed by or released mostly from the water, and a bit from the calorimeter, measuring △T of the water allows one to measure q for the reaction

Heat <u>out of system</u> = Heat <u>into surroundings</u>

 $q_{rxn} = -(q_{H20} + q_{cal})$ $q_{rxn} = -(ms\Delta T + C\Delta T)$